<

This Article Statistics
Viewed : 139 Downloaded : 72


 

Some abiotic stress on growth and lipid peroxidation on wheat seedlings

Pelin Şengül Toraman, Nuray Ergün , Berna Çalıcı

Abstract

The structure of the soil deteriorates with the changing world structure and increases the stress factors for plants. Water stress causes many morphological, physiological and biochemical changes in plants; however, it causes a decrease in photosynthesis and chlorophyll content. Drought stress affects the development of the organs of the plant such as stem, shoot and leaf area, and reduces the fresh and dry biomass of the leaves. It is important to determine malondialdehyde (MDA) value, which is an indicator of oxidative stress in plants exposed to abiotic stress, and the relationship of proteins with stress tolerance. In our study, 2 different varieties (Dağdaş and Doğankent) belonging to the Triticum aestivum L. species were used. By forming 4 different groups of this wheat (1st group; control – 2nd group; flooding – 3rd group; drought – 4th group; salinity). At the end of the 12th day, the plants were harvested. Compared to the control group of both wheat varieties, it was observed that the development of stress factors adversely affected shoot length, shoot dry weight in groups under stress. With the effect of abiotic stresses, a decrease occurred in chlorophyll a, chlorophyll b and total chlorophyll levels; however, it was observed that chlorophyll values of Dağdaş varieties decreased more than Doğankent and this decrease was mostly at salinity stress. Additionally, MDA accumulation was mostly in drought group of Doğankent seedlings and salinity group of Dağdaş seedlings. As a result; It can be stated that Dağdaş variety is resistant to drought and salinity stress and Doğankent seedlings are more resistant to drought stress.

Keywords

Drought, salinity, flooding, growth, chlorophyll, MDA

Download full text   |   How to Cite   |   Download XML Files

References
  • Akçura, M. (2006). Türkiye Kışlık Ekmeklik Buğday Genetik Kaynaklarının Karakterizasyonu. Doktora Tezi. Selçuk Üniversitesi, Fen Bilidirikmleri Enstitüsü, Tarla Bitkileri Anabilim Dalı, Konya.
  • Bayat, R. A., Kuşvuran, Ş., Ellialtıoğlu, Ş., & Üstün, S., A. (2014). Effects of Proline Application on Antioxidative Enzymes Activities in the Young Pumpkin Plants (Cucurbita pepo L. and C. moschata Poir.) under Salt Stress. Türk Tarım ve Doğa Bilimleri Dergisi, 1(1), 25-33.
  • Çelik, Ö. & Atak, Ç. (2012). The effect of salt stress on antioxidative enzymes and proline content of two Turkish tobacco varieties. Turkish Journal of Biology, 36, 339-356.
  • Çulha, Ş., & Çakırlar, H. (2011). Tuzluluğun bitkiler üzerine etkileri ve tuz tolerans mekanizmaları. Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi, 11- 34.
  • Ergene, A. (1982). Toprak Bilgisi. Atatürk Üniversitesi Ziraat Fakültesi Yayınları No:267, Ders Kitapları Serisi No:42, Erzurum, Turkey.
  • Hasanuzzaman, M., Banerjee, A., Bhuyan, M.H., Roychoudhury, A., Mahmud, J.A., & Fujita, M. (2019). Targeting glycine betaine for abiotic stress tolerance in crop plants: physiological mechanism, molecular interaction and signaling. Phyton International Journal of Experimental Botany, 88(3), 185-221.
  • Hodges, D.M., Delong, J.M., Forney, C.F., & Prange, R.K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207, 604-611.
  • Hossain, A., & Uddin, S.N. (2011). Mechanisms of waterlogging tolerance in wheat: Morphological and metabolic adaptations under hypoxia or anoxia. Australian Journal of Crop Science, 5(9), 1094-1101.
  • Hosseini, S.M., Hasanloo, T., & Mohammadi, S. (2015). Physiological characteristics, antioxidant enzyme activities, and gene expression in 2 spring canola (Brassica napus L.) cultivars under drought stress conditions. Turkish Journal of Agriculture and Forestry, 39, 413-420.
  • Kara, B., & Kara, N. (2009). Effect of different salinity (NaCl) concentrations on the first. development stages of root and shoot organs of wheat. Anadolu Tarım Bilim Dergisi, 25(1), 37-43.
  • Konak, C., Yılmaz, R., & Arabacı, O. (1998). Ege Bölgesi buğdaylarında tuza tolerans. Turkısh Journal of Agricultre and Forestry, 23(5), 1223-1229.
  • Kuşvuran, Ş., Yaşar, F., Abak K., & Ellialtıoğlu, Ş. (2008). NaCl stresi altında yetiştirilen tuza tolerant ve duyarlı Cucumis sp.’nin bazı genotiplerinde lipid peroksidasyonu, klorofil ve iyon miktarlarında meydana gelen değişimler. Tarım Bilimleri Dergisi (JournalAgriculture Science), 18(1), 13-20.
  • Kwiatkowski, J., & King, C.R. (1998). Salinity mapping for resource management within the M.D. of Acadia, Alberta. Alberta Agriculture, Food and Rural Development, Edmonton.
  • Lotfi, R., Pessarakli, M., Kouchebagh R.G., & Khoshvaghti, H. (2015). Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity. The Crop Journal, 3(5),434-439.
  • Öncel, I., & Keleş, Y. (2002). Tuz stresi altındaki buğday genotiplerinde büyüme, pigment içeriği ve çözünür madde kompozisyonunda değişmeler. Çukurova Üniversitesi. Fen Edebiyat Fakültesi, Fen Bilimleri Dergisi, 23(2),9-16.
  • Özçubukçu, S., Ergün, N., & İlhan, E. (2014). Waterlogging and nıtrıc oxıde ınduce gene expressıon and increase antioxidant enzyme activity in wheat (Triticum aestivum L.). Acta Biologica Hungarica, 65(1), 47-60.
  • Palta, Ç., (2009). 1.Ulusal Kuraklık ve çölleşme sempozyumu, 16-18 Haziran S: VII- VIII. Konya.
  • Porra, RJ, Thompson, W.A., & Kricdeman, P.E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta, 975, 384-34.
  • Sairam, R.K., Kumutha, D., Ezhilmathi, K., Deshmukh, P.S., & Srivastava, G.C. (2008). Physiology and biochemistry of waterlogging tolerance in plants. Biologia Plantarum, 52(3), 401-402.
  • Sayyaril, M., Ghavami, M., Ghanbari, F., & Kordi, S. (2013). Journal Assessment of salicylic acid impacts on growth rate and some physiological parameters of lettuce plants under drought stress conditions. International Journal of Agriculture and Crop Sciences, 5(17), 1951-1957.
  • Slesak, I., Libik, M., Karpinska, B., Karpinski, S., & Miszalski, Z. (2007). The role hydrogen peroxide in the regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochimica Polonica, 54(1), 39-50.
  • Şen, A., & Alikamanoğlu, S. (2011). Effect of stress on growth parameters and antioxidant enzymes of different wheat (Triticum aestivum L.) varieties on in vitro tissue culture. Fresenius Environmental Bulletin, 20, 489-49.
  • Yaşar, F., Ellialtıoğlu, Ş., Özpay, T., & Uzal, Ö. (2008). Tuz stresinin karpuzda (Citrullus lanatus (Thunb.) Mansf.) Antioksidatif Enzim (SOD, CAT, APX ve GR) aktivitesi üzerine etkisi. Yüzüncü Yıl Üniversitesi, Journal Agriculture of Science, 18(1), 61-65.
  • Yıldız M., & Terzi H. (2007). Bitkilerin yüksek sıcaklık stresine toleransının hücre canlılığı ve fotosentetik pigmentasyon testleri ile sıcaklık. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23 (1-2), 47-60.
  • Zhang, L., Wang, S., Chen, Y., Dong, M., Fang, Y. et. al. (2020). Genome-Wide Identification of the F-box Gene Family and Expression Analysis under Drought and Salt Stress in Barley. Phyton-International Journal of Experimental Botany, 89(2),229-251.