<

This Article Statistics
Viewed : 1891 Downloaded : 1474


 

Glucose Oxidase Applications and Comparison of the Activity Assays

Gül Özyılmaz*

Abstract

Glucose Oxidase (GOD) oxidizes glucose to -gluconolactone in presence of moleculer oxygen by forming hydrogen peroxide. As a result of the catalysed reaction, GOD is widely used in cases where glucose or molecular oxygen should be removed to extend the shelf life of foods or used in the production of controlled hydrogen peroxide or gluconic acid. One of the most important application areas of GOD is the construction of the glucose biosensors. There are several studies about GOD purification, immobilization, industrial and analytical applications, so, fast and sensitive determination of GOD activity is essential for these studies. In this study, GOD activity determination methods were reviewed mainly four approaches: determination of decrease in glucose or oxygen concentration and determination of increase in hydrogen peroxide or gluconic acid levels.

Keywords

Glucose Oxidase, Activity assays, gluconic acid, hydrogen peroxide

Download full text   |   How to Cite   |   Download XML Files

References
  • Aken, B.V., Ledent, P., Naveau H., & Agathos, S.N. (2000). Co-immobilization of manganese peroxidase from Phlebia radiate and glucose oxidase from Aspergillus niger on porous silica beads. Biotechnology Letters, 22, 641-646
  • Appleton, B., Gibson, T.D., & Woodward, J.R. (1997). High temperature stabilization of immobilized glucose oxidase: potential applications in biosensors. Sensors and Actuators B, 43, 65-69
  • Arıca, M.Y., & Bayramoğlu, G. (2004). Polyethyleneimine-grafted poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) membranes for reversible glucose oxidase immobilization. Biochemical Engineering Journal, 20, 73-77
  • Arimatsu, Y., Bao, J., Furumoto, K., Yoshimoto, M., Fukunaga, K., & Nakao, K. (2004). Continuous production of calcium gluconate crystals in an integrated bioreaction-crystallization process using external loop airlift bubble columns with immobilized glucose oxidase gel beads. Journal of Chemical Engineering of Japan, 37, 1035-1040
  • Atia, K.S., & El-Batal, A., (2005). Preparation of glucose oxidase immobilized in different carriers using radiation polymerization. Journal of Chemical Technology and Biotechnology, 80, 805-811.
  • Bao, J., Koumatsu, K., Arimatsu, Y., Furumoto, K., Yoshimoto, M., Fukunaga, K., & Nakao, K., (2003). A kinetic study on crystallization of calcium gluconate in external loop airlift column and stirred tank for an immobilized glucose oxidase reaction with crystallization. Biochemical Engineering Journal, 15, 177-184
  • Batista A.L.D., Silva R., Cappato L.P., Almada CN., Garcia R.K.A., Silva M.C., Raices R.S.L., Arellano D.B., Sant’Ana A., Junior C.A.C., Freitas M.Q., & Cruz A.G. (2015). Food Research International, 77, 627-635
  • Betancor, L., Lopez-Gallego, F., Hidalgo, A., Alonso-Morales, N., Fuentes, M., Fernandez-Lafuente, R., & Guisan, J.M. (2004). Prevention of interfacial inactivation of enzymes by coating the enzyme surface with dextran-aldehyde. Journal of Biotechnology, 110, 201-207
  • Betancor, L., Fuentes, M., Dellamora-Ortiz, G., Lopez-Gallego, F., Hidalgo, A., Alonso-Morales, N., Mateo, C., Guisan, J.M., & Fernandez-Lafuente, R. (2005). Dextran aldehyde coating of glucose oxidase immobilized on magnetic nanoparticles prevents its inactivation by gas bubbles. Journal of Molecular Catalysis B: Enzymatic, 32, 97-101
  • Bhat, S.V., Swathi BR, Rosy M., & Govinappa M., 2013. Isolation and characterization of glucose oxidase (GOD) from Aspergillu flavus and Penicillium sp. International Journal of Mivrobiology and Applied Sciences, 2(6), 153-161
  • Biyela, B.N.E., du Toit, W.J, Divol, B., Malherbe, D.F., & van Rensburg, P. (2009). The production of reduced-alcohol wines using Gluzyme Mono (R) 10.000 BG-treated grape juice. South African Journal of Enology and Viticulture, 30(2), 124-132
  • Blandino, A., Macias, M., & Cantero, D. (2001). Immobilization of Glucose Oxidase within Calcium Alginate Gel Capsules. Process Biochemistry. 36, 601-606
  • Blandino, A., Macias, M., & Cantero, D. (2002). Modelling and Simulation of a Bienzymatic Reaction System Co-immobilized Within Hydrogel-membrane Liquid-core Capsules. Enzyme and Microbial Technology, 31, 556-565
  • Brahim, S., Narinesingh, D., & Guiseppi-Elie, A. (2002). Kinetics of glucose oxidase immobilized in p(HEMA)-hydrogel microspheres in a packed-bed bioreactor. Journal of Molecular Catalysis B: Enzymatic, 715, 1-12
  • Breuil C., & Saddler J.N., (1985). Comparison of the 3,5-Dinitrosalicylic acid and Nelson-Somogyi methods of assaying for reducing sugars and determining cellulose activity. Enzyme and Microbial Technology, 7, 327-332
  • Bulmuş, V., Ayhan, H., & Pişkin, E. (1997). Modified PMMA monosize microbeads for glucose oxidase immobilization. The Chemical Engineering Journal, 65, 71-76
  • Canizares-Macias, P., Hernandez-Garciadiego, L., & Gomez-Ruiz, H. (2001). An Automated Flow Injection Analysis Procedure for the Determination of Reducing Sugars by DNSA Method. Journal of Food Science, 66 (3), 407-411
  • Casolaro, M., & Barbucci, R. (1991). An insulin-releasing system responsive to glucose: Thermodynamic evaluation of permeability properties. The International Journal of Artificial Organs, 14(11), 732-738
  • Chen, L.Q., Zhang, X.E., Xie, W.H., Zhou, Y.F., Zhang, Z.P., & Cass, A.E.G. (2002). Genetic modification of glucose oxidase for improving performance of an amperometric glucose biosensor. Biosensors and Bioelectronics, 17, 851-857
  • Cruz A.G., Castro W.F., Faria A.F., Bogusz Jr. S., Granato, D., Celeguini R.M.S., Lima-Pallone, J., & Godoy, H.T. (2012). Glucose oxidase: A potential option to decrease the oxidative stress in stirred probiotic yogurt. LWT-Food Science and Technology, 47, 512-515
  • Cruz, A.G., Castro, W.F., Faria, J.A.F, Bolini, H.M.A., Celeghini, R.M.S., & Raices, R.S.L., Oliviera, C.A.F., Freitas, M.Q., Junior, C.A.C., Marsico, E.T. (2013). Stability of probiotic yogurt added with glucose oxidase in plastic materials with different permeability oxygen rates during the refrigerated storage, Food Research International, 51, 723-728
  • Cui, C., Fang, Y., Chen, B., & Tan, T. (2019). Glucose oxidation performance is improved by the use of a supramolecular selfüassembly of glucose oxidase and catalase. Catalysis Science & Technology, 9, 477-482
  • Ekiz, F., Oğuzkaya, F., Akın, M., Timur, S., Tanyeli, C., & Toppare, L. (2011). Synthesis and application of poly-SNS-anchored carboxylic acid: a novel functional matrix for biomolecule conjugation, Journal of Materials Chemistry, 21, 12337-12343
  • Elçin, Y.M., & Sungur, S. (1993). Glucose oxidase immobilized on gelatin by various crosslinkers. Macromolecular Reports, A30, 137-147
  • Farooq A., Ali S., Abbas N., Fatima G.A., & Ashraf M.A. (2013). Comparative performance evaluation of conventinal bleaching and enzymatic bleaching with glucose on knitted cotton fabric. Journal of Cleaner Production, 42, 157-171
  • Ferreira, L.F.P., Taqueda, M.E., Vitolo, M., Converti A., & Pessoa Jr., A. (2005). Liquid-liquid extraction of commercial glucose oxidase by reversed micelles. Journal of Biotechnology, 116, 411-416
  • Frederick, K.R., Tung, J., Emerick, R.S., Masiarz, F.R., Chamberlian, S.H., Vasadava, A., & Rosenberg, S. (1990). Glucose oxidase from Aspergillus niger. The Journal of Biological Chemistry, 265, 3793-3802
  • Godjevargova, T., Dayal, R., & Marinov, I. (2004). Simultaneous Covalent Immobilization of Glucose Oxidase and Catalase onto Chemically modified Acrylonitrile Copolymer Membranes. Journal of Applied Polymer Science, 91, 4057-4063
  • Godjevargova, T., Konsulov, V., Dimov, A., & Vasileva, N. (2000). Behavior of glucose oxidase immobilized on ultrafiltration membranes obtained by copolymerizing acrylonitrile and N-vinylimidazol. Journal of Membrane Science, 172, 279-285
  • Godjevargova, T., Nenkova, R., & Dimova, N. (2005). Covalent immobilization of glucose oxidase onto new modified acrylonitrile copolymer/silica gel hybride supports. Macromolecular Bioscience, 5, 760-766
  • Godjevargova, T., Dayal, R., & Turmanova, S. (2004a). Gluconic acid production in bioreactor with immobilized glucose oxidase plus catalase on polymer membrane adjacent to anion-exchange membrane. Macromolecular Bioscience, 4, 950-956
  • Godjevargova, T., Dayal, R., & Marinov, I. (2004b). Simultaneous Covalent Immobilization of Glucose oxidase and catalase onto chemically modified acrylonitrile copolymer membranes. Journal of Applied Polymer Science, 91, 4057-4063
  • Gouda M.D., Singh, S.A., Appu Rao, A.G., Thakur M.S., & Karanth, N.G. (2003). Thermal inactivation of Glucose Oxidase Mechanism and stabilization using additivies. The Journal of Biological Chemistry, 278, 24324-24333.
  • Gulla, K.C., Gouda, M.D., Thakur, M.S., & Karanth, N.G. (2004). Enhancement of stability of immobilized glucose oxidase by modification of free thiols generated by reducing disulfide bonds and using additives. Biosensors and Bioelectronics, 19, 621-625
  • Guo, M., Fang, H., Wang, R., Yang, Z., & Xu, X. (2011). Electrodeposition of chitosan-glucose oxidase biocomposite onto Pt-Pb nanoparticles modified stainless steel needle electrode for amperometric glucose biosensor, Journal of Material Science: Mater. Med, 22, 1958-1992
  • Han X., Liu G., Pan Y., Song W., & Qu Y. (2018). Consolidated bioprocessing for sodium gluconate production from cellulose using Penicillium oxalicum. Bioresource Technology, 251, 407-410
  • Haouz, A., Glandieres, J.M., & Alpert, B. (2001). Involvement of protein dynamics in enzyme stability The case of glucose oxidase. FEBS Letters, 506, 216-220
  • Harborn, U., Xie, B., Venkatesh, R., & Danielsson, B. (1997). Evaluation of a Miniaturized Thermal Biosensor for the Determination of Glucose in Whole Blood. Clinica Chimica Acta, 267, 225-237
  • Huang J., Zhuang W., Ge L., Wang K., Wang Z., Niu H., Wu J., Zhu C., Chen Y., & Ying H. (2019). Improving biocatalytic microenvironment with biocompatible -poly-L-lysine for one step gluconic acid production in low pH enzymatic systems. Process Biochemistry, 76, 118-127
  • Isaaksen, A., & Adler-Nissen, J. (1997). Antioxidative Effect of Glucose Oxidase and Catalase in Mayonnaises of Different Oxidative Susceptibility.I. Product Trials. Lebensm. Wiss.u.Technology. 30, 841-846
  • Iturbe, F., Ortega, E., & Lopez-Munguia, A.C. (1989). A pH-stat method to measure glucose oxidase. Biotechnology Techniques, 3(1), 19-22
  • Kang, S.I., & Bae, Y.H. (2003). A Sulfonamide based glucose-responsive hydrogel with covalently immobilized glucose oxidase and catalase. Journal of Controlled Release, 86, 115-121
  • Khun, K., Ibupoto, Z.H., Lu, J. Al Salhi, M.S. Atif, M., Ansari, A.A., & Willander, M. (2012). Potentiometric glucose sensor based on the glucose oxidase immobilized iron ferrite magnetic particle/chitosan composite modified gold coated glass electrode, Sensors and Actuators B 173, 698-703.
  • Kleppe K. (1966). The Effect of Hydrogen Peroxide on Glucose Oxidase from Aspergillus niger Biochemistry, 5 (1), 139–143
  • Madhu, A., & Chakraborty, J.N., (2019). Bio-bleaching of cotton with H2O2 generated from native and immobilized glucose oxidase. AATCC Journal of Research, 6, 7-17
  • Mahdizadeh, F., & Eskandarian, M. (2014). Glucose oxidase and catalase co-immobilization on biosynthesized nanoporous SiO2 for removal of dissolved oxygen in water: Corrosion controlling of boilers. Journal of Industrial and Engineering Chemistry, 20, 2378-2383
  • Marsden, W.L, Gray P.P, Nippard G.J., & Quinlan M.R., (1982). Evaluation of the DNS method for Analysing Lignocellulosic Hydrolysates. J. Chem. Tech. Biotechnol. 32, 1016-1022
  • Mazeiko V., Kausaite-Minkstimiene A., Ramanaviciene A., Balevicius Z., & Ramanavicius A. (2013). Gold nanoparticle and conducting polymer-polyaniline-based nanocomposites for glucose biosensor design. Sensors and Actuators B: Chemical, 189, 187-193
  • Miller, L.G., (1959). Use of dinitrosalicylic acid reagent for determination reducing sugar. Analytical Chemistry, 31, 426-428
  • Miron, J., Gonzalez, M.P., Vazquez, J.A., Pastrana, L., & Murado, M.A. (2004). A mathematical model for glucose oxidase kinetics, including inhibitory, deactivant and diffusional effects, and their interactions. Enzyme and Microbial Technology, 34, 513-522
  • Mugo, S.M., Berg, D., & Bharath, G. (2019). Integrated microcentrifuge carbon entrapped glucose oxidase poly(N-isopropylacrylamide) (pNIPAm) microgels for glucose amperometric detection. Analytical Letters, 52, 825-838
  • Okuda, J., & Miva, I. (1970). Action of pure -D-glucose oxidase on higher animals. Biochemical Pharmacology, 19, 1777-1782
  • Okuda J., & Miva, I. (1971). Mutarotase effect on micro determinations of D-glucose and its anomers with -D-glucose oxidase. Analytical Biochemistry, 43(1), 312-315.
  • O’Malley, J., & Weaver, J. (1972). Subunit Structure of Glucose oxidase from Aspergillus niger, Biochemistry, 11, 3527
  • Ozyilmaz G., Tukel S.S., & Alptekin O. (2005). Activity and storage stability of immobilized glucose oxidase onto magnesium silicate. Journal of Molecular Catalysis B: Enzymatic, 35, 154-160
  • Ozyilmaz G., & Tukel S.S. (2007). Simultaneous Co-immobilization of Glucose Oxidase and Catalase in Their Substrates. Applied Biochemistry and Microbiology, 43, 29-35
  • Ozyilmaz G., & Ozyilmaz A.T, Ağçam S. (2018). Using Response Surface Methodology for Amperometric Glucose Biosensor Construction, Natural and Engineering Sciences, 3(1), 1-15
  • Parpinello, G.P., Chinnici, F., Versari, A., & Ripont, C. (2002). Preliminary Study on Glucose Oxidase-Catalase Enzyme System to Control the Browning of Apple and Pear Purees. Lebensm.-Wiss. U.-Technol. 35, 239-243
  • Pickering, G.J., Heatherbell, D.A., & Barnes, M.F. (1999). Optimising Glucose Conversion in the Production of Reduced Alcohol Wİne Using Glucose Oxidase. Food research International. 31 (10), 685-692
  • Portaccio, M., El-Masry, M., Rossi Diano, N., De Maio, A., Grano, V., Lepore, M., Travascio, P., Bencivenga, U., Pagliuca, N., & Mita, D.G. (2002). An amperometric sensor employing glucose oxidase immobilized on nylon membranes with different pore diameter and grafted with different monomers. Journal of Molecular Catalysis B: Enzymatic, 714, 1-19
  • Quan T.H., & Benjakul S. (2018). Impacts of desugarization and drying methods on physicochemical and functional properties of duck albumen powder. Drying Technology, 37, 864-875
  • Qui, F., Li F.Y., & Yang, Q.Y. (2017). Preparartion of Magnetic immobilized Glucose Oxidase and Bleaching of Cotton Fabrics, Textile Bioengineering and Informatics Symposium Proceedings, 3, 829-835
  • Ramanathan, K., Jönsson, B.R., & Danielsson, B. (2001). Sol-gel Based Thermal Biosensor, for Glucose. Analytica Chimica Acta. 427, 1-10
  • Ramezani M., Mostoufi, N., & Mehrnia, M.R. (2013). Effect of hydrodynamics on kinetics of gluconic acid enzymatic production in bubble column reactor. Chemical Industry &Chemical Engineering Quarterly, 19, 411-422
  • Reis C.Z., Fogolari O., Oliveira D., de Souza S.M.A.G.U., & de Souza A.A.U. (2017). Bioscouring and bleaching of knitted cotton fabrics in one-step process using enzymatically generated hydrogen peroxide. The Canadian Journal of Chemical Engineering, 95, 2048-2055.
  • Rogers, M.J., & Brandt, K.G. (1971). Multiple inhibition analysis of Aspergillus niger glucose oxidase by D-glucal and halide ions. Biochemistry, 10, 4636-4641
  • Ruiz E., Busto M.D:, Ramos-Gomez S., Palacios D., Pilar-Izquierdo M., & Ortega N. (2018). Encapsulation of glucose oxidase in alginate hollow beads to reduce the fermentable sugars in simulated musts, Food Bioscience, 24, 67-72
  • Salimi, A., & Noorbakhsh, A. (2011). Layer by layer assembly of glucose oxidase and thiourea onto glassy carbon electrode: fabrication of glucose biosensor, Electrochimica Acta 56, 6097-6105
  • Shah, D.N., & Kothari, R.M., (1993). Glucose oxidase-rich Aspergillus niger strain, cost-effective protocol and an economical substrate for the preparation of tablet grade calcium gluconate. Biotechnology Letters, 15, 35-40
  • Sisak, C., Csanadi, Z., Ronay, E., & Szajani, B. (2006). Elimination of glucose in egg white using immobilized glucose oxidase. Enzyme and Microbial Technology, 37, 1002-1007
  • Solomon, B. (1977). Enzymic activity and conformational properties of native and crosslinked glucose oxidase. Biopolymers, 16, 1837-1852
  • Sukhacheva M.V., Davydova M.E., & Netrusov A.I. (2004). Production of Penicillium funiculosum 433 glucose oxidase and its properties. Applied Biotechnology and Microbiology, 40, 25-29
  • Sumner, J.B., & Noback, C.V.I. (1924). The estimation of sugar in diabetic urine, using dinitrosalcylic acid. Journal of Biological Chemistry, 62: 287-290
  • Suye, S., Kumon Y., & Ishigaki, A. (1998). Immobilization of glucose oxidase on poly(L-Lysine)-modified polycarbonate membrane. Biotechnology Applied Biochemistry, 27, 245-248
  • Szweda R.T., Schmidt K., & Zorn H. (2013). Bleaching of colored whey and milk by a multiple-enzyme system. Eurapian Food Research Technology, 237, 377-384
  • Tzanov, T., Costa, S.A., Gübitz, G.M., & Cavaco-Paulo, A. (2002). Hydrogen peroxide generation with immobilized glucose oxidase for textile bleaching. Journal of Biotechnology, 93, 87-94
  • Uang, Y.M., & Chou, T.C. (2003). Fabrication of glucose oxidase/polypyrrole biosensor by galvanostatic method in various pH aqueous solutions, Biosensors and Bioelectronics 19, 141-147.
  • Ukeda, H., Ohira, M., Sarker, A.K., & Sawamura, M. (1998). Deposition of glucose oxidase on the surface of microtiter plate: its application to determination of glucose in foods. Food Research International, 31, 297-302
  • Valencia P., Espinoza K., Ramirez C., Franco W., & Urtubia A. (2017). Technical Feasibility of Glucose Oxidase as a Prefermentation Treatment for Lowering the Alcoholic Degree of Red Wine. American Journal of Enology and Viticulture. 68(3), 386-389
  • Valentova O., Marek M., Svec F., & Stamberg J. (1981). Comparison of different methods of glucose oxidase immobilization. Biotechnology and Bioengineering, 23(9), 2093-2014
  • Vrbova, E., & Marek, M. (1990). Application of the Ugi Reaction for the Preparation of Enzyme Electrodes. Analytica Chimica Acta. 239, 263-268
  • Wang, L., Gao, X., Jin, L., Wu, Q., Chen, Z., & Lin, X. (2013). Amperometric glucose biosensor based on silver nanowires and glucose oxidase, Sensors and Actuators B, 176, 9-14
  • Weibel, M.K., & Brights, H.J. (1971), The glucose oxidase mechanism interpretation of the pH dependence. The Journal of Biological Chemistry, 246, 2734-2744
  • Witt, S., Wohlfahrt, G., Schomburg, D., Hecht, H.J., & Kalisz H.M. (2000). Conserved arginine-516 of Penicillum amagasakiense glucose oxidase is essential for the efficient binding of -D-glucose. Biochemical Journal, 347, 553-559
  • Xu D., Sun L., Li C., Wang Y., & Ye R. (2018). Inhibitory effect of glucose oxidase from Bacillus sp. CAMT22370 on the quality deterioration of Pacific white shrimp during cold storage. LWT, 92, 339-346
  • van Staden, J.F., & Mulaudzi L.V., (2000). Flow injection spectrophometric assay of -amylase activity. Analytica Chimica Acta, 421, 19-25
  • Yang, Y.M., Wang, J.W., & Tan, R.X. (2004). Immobilization of glucose oxidase on chitosan-SiO2 gel. Enzyme and Microbial Technology, 34, 126-131
  • Yavuz, H., Bayramoğlu, G., Kaçar, Y., Denizli, A., & Arıca, M.Y. (2002). Congo Red attached monosize poly(HEMA-co-MMA) microspheres for use in reversible enzyme immobilization. Biochemical Engineering Journal, 10, 1-8
  • Ying L., Kang, E.T., & Neoh, K.G. (2002). Covalent immobilization of glucose oxidase on microporous membranes prepared from poly(vinylidene fluoride) with grafted poly(acrylic acid) side chains. Journal of Membrane Sience, 208, 361-374
  • Yu S., Olsen C.E., & Marcussen J., (1998). Methods for the assay of 1,5-anhydro-D-fructose and -1,4-glucan lyase. Carbohydrate Research, 305, 73-82
  • Zhao, H., Zhang, X., Zhou, X., & Li, Z. (2002). Use of the glucose oxidase system for estimation of oxygen transfer rate in a solid-state bioreactor. Enzyme and Microbial Technology, 30, 843-846
  • Zhao B., Zhou L., Ma L., He Y., Gao J., Li D., & Jiang Y. (2018). Co-immobilization of glucose oxidase and catalase in silica inverse opals for glucose removal from commercial isomaltooligosaccharide. International Journal of Biological Macromolecules, 107, 2034-2043
  • Zhou Y., & Lim L.T. (2009). Activation of lactoperoxidase system in milk by glucose oxidase immobilized in electrospun polylactide microfibers. Journal of Food Science, 74(2), C170-C176